Name: Momani

MATRICES

A Matrix is simplified version of working with equations with multiple variables.

If a car company is building cars and trucks they can use matrices to determine the number of parts they will need over a given span of time, producing a particular number of vehicles. If each car needs 4 wheels, 2 bench seats, and 1 gas tank. Each truck needs 6 wheels, 1 bench seat and 3 gas tanks. Then we can set-up a matrix where each row and column are for a given part of the equation.

w s g
$$c\begin{bmatrix} 4 & 2 & 1 \\ 6 & 1 & 3 \end{bmatrix}$$
, where the c=cars, t=trucks, w=wheels, s=seats, and g=gas tanks

Using matrices we can solve for all kinds of situations. Matrices have their own specific rules for adding, subtracting, multiplying, and dividing.

The size (dimension) of a Matrix is # Rows by # Columns. (Rows go across, columns up and down)

EXAMPLE:
$$B = \begin{bmatrix} 3 & 2 \\ 1 & 0 \\ -1 & -2 \end{bmatrix} \leftarrow row$$
 Matrix B is a 3 x 2 matrix.

↑ Column

An element of a Matrix is the value in a particular position.

EXAMPLE:
$$B = \begin{bmatrix} 3 & 2 \\ 1 & 0 \\ -4 & -5 \end{bmatrix} b_{row,column}$$
 $b_{1,2} = 2$ $\xrightarrow{>}$ 1st then 2^{nct}

2 is the element in the 1^{st} row and 2^{nd} column

Use the matrices below to answer all questions.

$$A = \begin{bmatrix} 1 & 0 & -2 \\ 2 & 3 & 5 \\ 2 & -3 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} 3 & 2 \\ 1 & 0 \\ -1 & -2 \end{bmatrix} \qquad C = \begin{bmatrix} -3 & 0 & 2 \\ 1 & -1 & 0 \\ 0 & -4 & 3 \end{bmatrix} \qquad D = \begin{bmatrix} -2 & -2 \\ 7 & 9 \\ 3 & 6 \end{bmatrix}$$

$$E = \begin{bmatrix} 2 & -8 & 13 & 5 \end{bmatrix} \qquad F = \begin{bmatrix} 4 \\ 7 \end{bmatrix} \qquad G = \begin{bmatrix} 0 & 2 & -4 \\ 3 & 5 & -5 \\ 1 & 1 & 6 \end{bmatrix} \qquad H = \begin{bmatrix} -4 & 2 & 1 & 0 \\ -2 & -1 & 4 & 1 \end{bmatrix}$$

List the dimensions for the specified matrix

1. E
$$\frac{1 \times 4}{3 \times 1}$$
 4. H $\frac{2 \times 4}{3 \times 3}$
2. F $\frac{3 \times 2}{3 \times 2}$ 6. B $\frac{3 \times 2}{3 \times 2}$

Identify the element in the specified locations, If possible.

If the Matrices are set equal to each other, each element must be the same.

Solve for all variables

9.
$$\begin{bmatrix} 4 & x \\ y+3 & -8 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 12 & z-8 \end{bmatrix}$$

$$x=0$$
 $y+3=12$ $-8=2-8$ $y=9$ $0=2$

10.
$$\begin{bmatrix} 2a+1 & 16 \\ 7-b & 1 \end{bmatrix} = \begin{bmatrix} 17 & 16 \\ -15 & c+4 \end{bmatrix}$$

$$2a+1=17$$

$$2a=16$$

$$-b=-22$$

$$\boxed{0=8}$$
ADDING, SUBTRACTING, AND SCALAR MULTIPLICATION

$$\begin{bmatrix} -3 = C \end{bmatrix}$$

ADDING, SUBTRACTING

When Adding and Subtracting Matrices, the matrices must be the same exact size!

Scalar Multiplication – make sure you distribute the multiplier to ALL.

EXAMPLES:
$$A = \begin{bmatrix} 1 & 0 & -2 \\ 2 & 3 & 3 \\ \hline 2 & 3 & 0 \end{bmatrix}$$
 $C = \begin{bmatrix} -3 & 0 & 2 \\ 1 & -1 & 0 \\ \hline 0 & 4 & 3 \end{bmatrix}$ Use the following matrices for these examples:

$$C = \begin{bmatrix} -3 & \boxed{0} & \boxed{2} \\ \boxed{1} & -1 & \boxed{0} \\ \boxed{0} & \boxed{4} & \boxed{3} \end{bmatrix}$$
 Use the following

2. A - C =
$$\begin{bmatrix} 4 & 0 & -4 \\ 1 & 4 & 5 \\ 2 & 1 & -3 \end{bmatrix}$$

$$3. 4A = \begin{bmatrix} 4 & 0 & -8 \\ 8 & 12 & 20 \\ 8 & -12 & 0 \end{bmatrix}$$

MATRICES ON THE CALCULATOR

ADDITION, SUBTRACTION, AND SCALAR MULTIPLICATION:

You can enter and manipulate matrices with your graphing calculator (see directions below):

$$A = \begin{bmatrix} 2 & -1 \\ 7 & 4 \end{bmatrix}$$

$$B = \begin{bmatrix} 6 & -3 \\ 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & -1 \\ 7 & 4 \end{bmatrix} \qquad B = \begin{bmatrix} 6 & -3 \\ 1 & 4 \end{bmatrix} \qquad [A] + [B] = \begin{bmatrix} 8 & -4 \\ 8 & 8 \end{bmatrix}$$

Entering the Matrix into the Calculator

- Go into the Matrix Menu
 - - \(\bigsim \) (right arrow) over to EDIT
- Select a Matrix
 - **ENTER** for 1:[A] (This is Matrix A) OR
 - Use ▼ (down arrow) to select another Matrix in the list and push ENTER
- Input the Dimension (size) of the Matrix (*Rows x Columns*)
 - # of Rows ENTER
 - # of Columns ENTER
- Input the elements (values) of the Matrix
 - Type in each # so that the matrix in the calculator looks exactly like the matrix on the paper.
 - Use the arrow keys to move within the Matrix.
- When the Matrix is complete
 - 2nd QUIT

To Perform Operations on Matrices (Addition, Subtraction, Scalar Multiplication)

- Enter all the matrices you need to perform the operation(s).
- Go into the Matrix Menu
 - 2^{nd} MATRX (the x^{-1} key)
 - Under NAMES, press ENTER for 1:[A] (This is Matrix A) OR
 - Use ▼ (down arrow) to select another Matrix in the list and push ENTER
- Name of the first Matrix will appear on the Home screen. Example: [A]
- Push the desired operation key: +, -, x Example: [A] +

- Go into the Matrix Menu

 2nd MATRX (the x⁻¹ key)

 Use ▼ to select the other Matrix in the list and push ENTER
- Name of second Matrix will appear on the Home screen. Example: [A] + [B]
- Push **ENTER** and the result will be displayed on the Home screen.

Use your calculator to perform the appropriate operation on the given matrices

$$A = \begin{bmatrix} 1 & 0 & 4 \\ 6 & 3 & -3 \\ 0 & -3 & 4 \end{bmatrix} B = \begin{bmatrix} 2 & 7 & 0 \\ -4 & 1 & 8 \\ -2 & -4 & 1 \end{bmatrix} C = \begin{bmatrix} 4 & 0 \\ -9 & 2 \\ 1 & 5 \end{bmatrix} D = \begin{bmatrix} 0 & 1 \\ -9 & -1 \\ 4 & 3 \end{bmatrix} E = \begin{bmatrix} 1 & 0 & 3 \\ 4 & 0 & -7 \\ 6 & 4 & 3 \end{bmatrix}$$

$$\begin{bmatrix} -4 & \downarrow \\ 0 & -3 \\ 3 & -\lambda \end{bmatrix}$$

$$\begin{bmatrix}
3 & 0 & 9 \\
12 & 0 & -21 \\
18 & 12 & 9
\end{bmatrix}$$

4.
$$B + A - C$$

5.
$$4A - 3E + B$$

$$5. \begin{bmatrix} 3 & 7 & 7 \\ 8 & 13 & 17 \\ -20 & -28 & 8 \end{bmatrix}$$

$$\begin{bmatrix}
0 & -7 & 7 \\
14 & 2 & -18 \\
8 & 5 & 6
\end{bmatrix}$$
6.

$$\begin{bmatrix}
-12 & -21 & -24 \\
-24 & -21 & -6 \\
6 & 30 & -27
\end{bmatrix}$$

$$A = \begin{bmatrix} 2 & -5 \\ -1 & 7 \end{bmatrix}$$

$$B = \begin{bmatrix} 11 \\ -2 \\ 5 \end{bmatrix}$$

$$C = \begin{bmatrix} 2 & 0 & -4 \\ 8 & 3 & -4 \\ -9 & 2 & 5 \end{bmatrix} \qquad D = \begin{bmatrix} 4 & -1 & 6 \end{bmatrix}$$

$$D = [4 -1 6]$$

$$\mathsf{E} = \begin{bmatrix} 6 & -8 \\ 0 & 3 \end{bmatrix}$$

$$\mathbf{F} = \begin{bmatrix} 2 & 4 \\ -5 & 3 \\ 1 & 6 \end{bmatrix}$$

$$G = \begin{bmatrix} 10 & 1 & 0 \\ 2 & -4 & 5 \end{bmatrix}$$

$$H = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$I = \begin{bmatrix} 8 \\ -4 \\ 5 \end{bmatrix}$$

$$J = \begin{bmatrix} 1 & -4 & 7 \\ 3 & 6 & 9 \\ -2 & 0 & 2 \end{bmatrix}$$

$$K = \begin{bmatrix} 8 & 4 & -3 \\ 7 & 1 & 0 \end{bmatrix}$$

List the dimensions for each specific matrix.

If possible, identify the element in the specific locations of the matrix.

20. Matrix K,
$$k_{1,3}$$

21. Matrix A,
$$a_{2,2}$$

23. Matrix D,
$$d_{1,3}$$

24. Matrix J,
$$j_{3,3}$$

26. Matrix G,
$$g_{2,3}$$