DETERMINANTS AND INVERSES OF MATRICES

Finding the inverse of a matrix is very important in many areas of science. For example, decrypting a coded message uses the inverse of a matrix. We use determinants to answer this problem and find the inverse. To find the determinant and inverse of a matrix, it must be a square matrix, for example a 2x2 or 3x3. The determinant of a 2x2 matrix can easily be found by the following:

Given matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, the determinant of A, or det(A) = ad - bc

EXAMPLE: Find the determinant of B = $\begin{bmatrix} 4 & -2 \\ 1 & -3 \end{bmatrix}$

$$det(b) = (4)(-3)$$
 - $(-2)(1) = -12$ - $-2 = -12 + 2 = -10$

Determinants are used to find the inverses of matrices. The inverse of a matrix exists if and only if the determinant $\neq 0$. In this case, the inverse of A does exist because $-10 \neq 0$.

Find the determinant and state whether the inverse exists.

1.
$$B = \begin{bmatrix} 4 & -2 \\ 5 & -1 \end{bmatrix}$$

Determinant: O

Inverse? Yes

2.
$$C = \begin{bmatrix} -5 & -5 \\ -3 & 5 \end{bmatrix}$$
 Determinant: -40 Inverse?

3.
$$D = \begin{bmatrix} 3 & 3 \\ -4 & -2 \end{bmatrix}$$
 Determinant: Q

Inverse? **US**

$$-60 - -12 = -6 + 12$$

4.
$$E = \begin{bmatrix} 2 & -3 \\ 2 & -3 \end{bmatrix}$$
 Determinant:

Inverse? \(\bigcirc \)

For square matrices larger than 2x2, it is easier to use a calculator to find the determinants.

- Follow the steps from yesterday to enter the matrices into the calculator
- Go to the Matrix Menu and use (right arrow) over to MATH
- ENTER | for 1: det(
- for the matrix you ENTER Go to the Matrix Menu and under NAMES, press would like to find the determinant for
- **ENTER**

Find the determinant and state whether the inverse exists.

5.
$$F = \begin{bmatrix} -1 & 1 & 4 \\ -6 & 3 & 4 \\ 2 & 0 & 6 \end{bmatrix}$$
 Determinant: A Inverse? A

6.
$$G = \begin{bmatrix} -3 & 4 & 1 \\ -2 & 6 & -4 \\ -5 & 4 & 5 \end{bmatrix}$$
 Determinant: \bigcup

Inverse? YLS

7. H =
$$\begin{bmatrix} -1 & -5 & -3 \\ 2 & 1 & -1 \\ -1 & -5 & -3 \end{bmatrix}$$
 Determinant:

Inverse? $\bigcap \bigcirc$

8.
$$I = \begin{bmatrix} 3 & 2 & -2 \\ -2 & -3 & -5 \\ -5 & -4 & 1 \end{bmatrix}$$
 Determinant: __\

Inverse? YES

We can use our calculator to find the inverses of matrices. To find the inverse of a matrix,

Select the matrix from the Matrix Menu under NAMES and press

ENTER

ENTER

Find the inverses for matrices A-I in this packet (most should already be in your calculator)

$$A^{-1} = \begin{bmatrix} 3 & -, 2 \\ -, 4 \end{bmatrix}$$

$$B^{-1} = \begin{bmatrix} -.167 & .333 \\ -.833 & .667 \end{bmatrix}$$

$$C^{-1} = \begin{bmatrix} -.125 & -.125 \\ -.075 & .125 \end{bmatrix}$$

$$D^{-1} = \begin{bmatrix} -.333 & -.5 \\ .667 & .5 \end{bmatrix}$$

$$D^{-1} = \begin{bmatrix} -.333 & -.5 \\ .667 & .5 \end{bmatrix}$$

$$F^{-1} = \begin{bmatrix} 9 & -3 & -4 \\ 22 & -7 & -10 \\ -3 & 1 & 1.5 \end{bmatrix}$$

$$G^{-1} = \begin{bmatrix} 11.5 & -4 & -5.5 \\ 7.5 & -2.5 & -3.5 \\ 5.5 & -2 & -2.5 \end{bmatrix}$$

$$I^{-1} = \begin{bmatrix} 23 & -6 & 16 \\ -27 & 7 & -19 \\ 7 & -a & 5 \end{bmatrix}$$